
CHAPTER 2 

SIMPLE LINEAR REGRESSION 

2.1 I NTRO DU CTlO N 

We start with the simple case of studying the relationship between a response vari- 
able Y and a predictor variable X I .  Since we have only one predictor variable, 
we shall drop the subscript in X I  and use X for simplicity. We discuss covariance 
and correlation coefficient as measures of the direction and strength of the linear 
relationship between the two variables. Simple linear regression model is then 
formulated and the key theoretical results are given without mathematical deriva- 
tions, but illustrated by numerical examples. Readers interested in mathematical 
derivations are referred to the bibliographic notes at the end of the chapter, where 
books that contain a formal development of regression analysis are listed. 

2.2 COVARIANCE AND CORRELATION COEFFICIENT 

Suppose we have observations on n subjects consisting of a dependent or response 
variable Y and an explanatory variable X .  The observations are usually recorded 
as in Table 2.1. We wish to measure both the direction and the strength of the 
relationship between Y and X .  Two related measures, known as the covariance 
and the correlation coeficient, are developed below. 
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Table 2.1 Notation for the Data Used in Simple Regression and Correlation 
~~~ ~ ~ 

Observation Response Predictor 
Number Y X 

1 Y1 XI 

2 Y2 x2 

n Yn Xn 

On the scatter plot of Y versus X ,  let us draw a vertical line at 2 and a horizontal 
line at j j ,  as shown in Figure 2.1, where 

are the sample mean of Y and X, respectively. The two lines divide the graph into 
four quadrants. For each point i in the graph, compute the following quantities: 

0 yi - j j ,  the deviation of each observation yi from the mean of the response 
variable, 

0 zi - 2, the deviation of each observation xi from the mean of the predictor 
variable, and 

0 the product of the above two quantities, (yi - fj) (xi - 2 ) .  

It is clear from the graph that the quantity (yi - y) is positive for every point in the 
first and second quadrants, and is negative for every point in the third and fourth 

Figure 2.1 A graphical illustration of the correlation coefficient. 
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quadrants. Similarly, the quantity (xi - Z )  is positive for every point in the first and 
fourth quadrants, and is negative for every point in the second and third quadrants. 
These facts are summarized in Table 2.2. 

Table 2.2 Algebraic Signs of the Quantities (yz - I) and (2, - 3)  

Quadrant Yi - Y xi - z (Y i  - $(.i - 2 )  
~ 

1 + 
3 
4 

+ + 

If the linear relationship between Y and X is positive (as X increases Y also 
increases), then there are more points in the first and third quadrants than in the 
second and fourth quadrants. In this case, the sum of the last column in Table 2.2 
is likely to be positive because there are more positive than negative quantities. 
Conversely, if the relationship between Y and X is negative (as X increases Y 
decreases), then there are more points in the second and fourth quadrants than in 
the first and third quadrants. Hence the sum of the last column in Table 2.2 is likely 
to be negative. Therefore, the sign of the quantity 

COV(Y,X) = 2=1 1 (2.2) n - 1  

which is known as the covariance between Y and X, indicates the direction of the 
linear relationship between Y and X. If Cov(Y, X )  > 0, then there is a positive 
relationship between Y and X, but if Cov(Y,X) < 0, then the relationship is 
negative. Unfortunately, Cov(Y,X) does not tell us much about the strength of 
such a relationship because it is affected by changes in the units of measurement. For 
example, we would get two different values for the Cov(Y, X )  if we report Y and/or 
X in terms of thousands of dollars instead of dollars. To avoid this disadvantage 
of the covariance, we standardize the data before computing the covariance. To 
standardize the Y data, we first subtract the mean from each observation then divide 
by the standard deviation, that is, we compute 

where 

(2.4) 

is the sample standard deviation of Y. It can be shown that the standardized 
variable 2 in (2.3) has mean zero and standard deviation one. We standardize X in 
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a similar way by subtracting the mean Z from each observation zi then divide by 
the standard deviation sx. The covariance between the standardized X and Y data 
is known as the correlation coeflcient between Y and X and is given by 

Cor(Y,X) = - 
n - 1 .  

Equivalent formulas for the correlation coefficient are 

Cov(Y, X) 
Cor(Y,X) = 

s y s x  

Thus, Cor(Y, X) can be interpreted either as the covariance between the standard- 
ized variables or the ratio of the covariance to the standard deviations of the two 
Variables. From (2.5), it can be seen that the correlation coefficient is symmetric, 
that is, Cor(Y, X) = Cor(X, Y). 

Unlike Cov(Y, X), Cor(Y, X) is scale invariant, that is, it does not change if we 
change the units of measurements. Furthermore, Cor(Y, X) satisfies 

(2.8) 

These properties make the Cor(Y,X) a useful quantity for measuring both the 
direction and the strength of the relationship between Y and X .  The magnitude of 
Cor(Y, X) measures the strength of the linear relationship between Y and X .  The 
closer Cor(Y, X) is to 1 or -1, the stronger is the relationship between Y and X .  
The sign of Cor(Y, X )  indicates the direction of the relationship between Y and X .  
That is, Cor(Y, X) > 0 implies that Y and X are positively related. Conversely, 
Cor(Y, X) < 0, implies that Y and X are negatively related. 

Note, however, that Cor(Y, X) = 0 does not necessarily mean that Y and X are 
not related. It only implies that they are not linearly related because the correlation 
coefficient measures only linear relationships. In other words, the Cor(Y, X )  can 
still be zero when Y and X are nonlinearly related. For example, Y and X in Table 
2.3 have the perfect nonlinear relationship Y = 50 - X2 (graphed in Figure 2.2), 
yet Cor(Y, X )  = 0. 

Furthermore, like many other summary statistics, the Cor(Y,X) can be sub- 
stantially influenced by one or few outliers in the data. To emphasize this point, 
Anscombe (1973) has constructed four data sets, known as Anscombe’s quartet, 
each with a distinct pattern, but each having the same set of summary statistics (e.g., 
the same value of the correlation coefficient). The data and graphs are reproduced 
in Table 2.4 and Figure 2.3. The data can be found in the book’s Web site.’ An 
analysis based exclusively on an examination of summary statistics, such as the 
correlation coefficient, would have been unable to detect the differences in patterns. 

-1 5 Cor(Y,X) 5 1. 

’ http://www.ilr.corneIl.eduThadi/RABE4 
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Y X Y X 
1 -7 46 -2 

14 -6 49 -1 
25 -5 50 0 
34 -4 49 1 
41 -3 46 2 

Y X 
41 3 
34 4 
25 5 
14 6 

1 7 

-4 0 4 
.I 

A 

Figure 2.2 A scatter plot of Y versus X in Table 2.3. 

Table 2.4 
Statistics 

Anscombe’s Quartet: Four Data Sets Having Same Values of Summary 

Yl XI 
8.04 10 
6.95 8 
7.58 13 
8.81 9 
8.33 11 
9.96 14 
7.24 6 
4.26 4 

10.84 12 
4.82 7 
5.68 5 

y2 x2 

9.14 10 
8.14 8 
8.74 13 
8.77 9 
9.26 11 
8.10 14 
6.13 6 
3.10 4 
9.13 12 
7.26 7 
4.74 5 

y 3  x3 

7.46 10 
6.77 8 

12.74 13 
7.1 1 9 
7.81 11 
8.84 14 
6.08 6 
5.39 4 
8.15 12 
6.42 7 
5.73 5 

Source: Anscombe (1 973). 

y4 x4 

6.58 8 
5.76 8 
7.71 8 
8.84 8 
8.47 8 
7.04 8 
5.25 8 

12.50 19 
5.56 8 
7.91 8 
6.89 8 
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Figure 2.3 Scatter plots of the data in Table 2.4 with the fitted lines. 

An examination of Figure 2.3 shows that only the first set, whose plot is given 
in (a), can be described by a linear model. The plot in (b) shows the second 
data set is distinctly nonlinear and would be better fitted by a quadratic function. 
The plot in (c) shows that the third data set has one point that distorts the slope 
and the intercept of the fitted line. The plot in (d) shows that the fourth data set 
is unsuitable for linear fitting, the fitted line being determined essentially by one 
extreme observation. Therefore, it is important to examine the scatter plot of Y 
versus X before interpreting the numerical value of Cor(Y, X ) .  

2.3 EXAMPLE: COMPUTER REPAIR DATA 

As an illustrative example, consider a case of a company that markets and repairs 
small computers. To study the relationship between the length of a service call 
and the number of electronic components in the computer that must be repaired 
or replaced, a sample of records on service calls was taken. The data consist of 
the length of service calls in minutes (the response variable) and the number of 
components repaired (the predictor variable). The data are presented in Table 2.5. 
The Computer Repair data can also be found in the book's Web site. We use this 
data set throughout this chapter as an illustrative example. The quantities needed 
to compute tj, 1, Cov(Y, X ) ,  and Cor(Y, X )  are shown in Table 2.6. We have 



EXAMPLE: COMPUTER REPAIR DATA 27 

Row Minutes Units 
1 23 1 
2 29 2 
3 49 3 
4 64 4 
5 74 4 
6 87 5 
7 96 6 

Row Minutes Units 
8 97 6 
9 1 09 7 
10 119 8 
11 149 9 
12 145 9 
13 154 10 
14 166 10 

N 

50 100 150 

Units 

Figure 2.4 Computer Repair data: Scatter plot of Minutes versus Units. 

n c (Y i  - 9(.i - 5) 
Cov(Y,X) = Z=l - - -- 1768 - 136, 

n - 1  13 
and 

= 0.996. 
1768 

J 27768.36 x 114 
- - C(Yi - y)(.i - 2) Cor(Y, X )  = 

JC(Yi - Y)2 C(.i - $ 2  

Before drawing conclusions from this value of Cor(Y, X ) ,  we should examine the 
corresponding scatter plot of Y versus X .  This plot is given in Figure 2.4. The 
high value of Cor(Y, X )  = 0.996 is consistent with the strong linear relationship 
between Y and X exhibited in Figure 2.4. We therefore conclude that there is a 
strong positive relationship between repair time and units repaired. 

Although Cor(Y, X) is a useful quantity for measuring the direction and the 
strength of linear relationships, it cannot be used for prediction purposes, that is, 
we cannot use Cor(Y, X) to predict the value of one variable given the value of the 
other. Furthermore, Cor(Y, X) measures only pairwise relationships. Regression 
analysis, however, can be used to relate one or more response variable to one or 
more predictor variables. It can also be used in prediction. Regression analysis 
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Table 2.6 
Between the Length of Service Calls, Y ,  and Number of Units Repaired, X 

Quantities Needed for the Computation of the Correlation Coefficient 

1 23 1 
2 29 2 
3 49 3 
4 64 4 
5 74 4 
6 87 5 
7 96 6 
8 97 6 
9 109 7 

10 119 8 
11 149 9 
12 145 9 
13 154 10 
14 166 10 

-74.21 
-68.21 
-48.21 
-33.21 
-23.21 
-10.21 

-1.21 
-0.21 
1 1.79 
21.79 
51.79 
47.79 
56.79 
68.79 

-5 
-4 
-3 
-2 
-2 
- 1  

0 
0 
1 
2 
3 
3 
4 
4 

5507.76 
4653.19 
2324.62 
1103.19 
538.90 
104.33 

1.47 
0.05 

138.90 
474.62 

268 1.76 
2283.47 
3224.62 
473 1.47 

25 
16 
9 
4 
4 
1 
0 
0 
1 
4 
9 
9 

16 
16 

37 1.07 
272.86 
144.64 
66.43 
46.43 
10.21 
0.00 
0.00 

11.79 
43.57 

155.36 
143.36 
227.14 
275.14 

Total 1361 84 0.00 0 27768.36 114 1768.00 

is an attractive extension to correlation analysis because it postulates a model that 
can be used not only to measure the direction and the strength of a relationship 
between the response and predictor variables, but also to numerically describe that 
relationship. We discuss simple linear regression models in the rest of this chapter. 
Chapter 3 is devoted to multiple regression models. 

2.4 THE SIMPLE LINEAR REGRESSION MODEL 

The relationship between a response variable Y and a predictor variable X is 
postulated as a lineaI-2 model 

Y = Po + p1x + E ,  (2.9) 

where Po and PI,  are constants called the model regression coeficients or purum- 
eters, and E is a random disturbance or error. It is assumed that in the range of 
the observations studied, the linear equation (2.9) provides an acceptable approxi- 
mation to the true relation between Y and X. In other words, Y is approximately 
a linear function of X ,  and E measures the discrepancy in that approximation. 

'The adjective linenr has a dual role here. It may be taken to describe the fact that the relationship 
between Y and X is linear. More generally, the word linear refers to the fact that the regression 
parameters, PO and PI,  enter (2.9) in a linear fashion. Thus, for example, Y = PO + PIX' + E is 
also a linear model even though the relationship between Y and X is quadratic. 
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In particular E contains no systematic information for determining Y that is not 
already captured in X .  The coefficient PI,  called the slope, may be interpreted 
as the change in Y for unit change in X .  The coefficient PO, called the constant 
coefficient or intercept, is the predicted value of Y when X = 0. 

According to (2.9), each observation in Table 2.1 can be written as 

yz = Po + P1.z + E i ,  i = 1 , 2 , .  . . ,n, (2.10) 

where yi represents the ith value of the response variable Y ,  xi represents the ith 
value of the predictor variable X, and ~i represents the error in the approximation 

Regression analysis differs in an important way from correlation analysis. The 
correlation coefficient is symmetric in the sense that Cor(Y,X) is the same as 
Cor(X, Y ) .  The variables X and Y are of equal importance. In regression analysis 
the response variable Y is of primary importance. The importance of the predictor 
X lies on its ability to account for the variability of the response variable Y and 
not in itself per se. Hence Y is of primary importance. 

Returning to the Computer Repair Data example, suppose that the company 
wants to forecast the number of service engineers that will be required over the next 
few years. A linear model, 

(2.1 1) 

is assumed to represent the relationship between the length of service calls and the 
number of electronic components in the computer that must be repaired or replaced. 
To validate this assumption, we examine the graph of the response variable versus 
the explanatory variable. This graph, shown in Figure 2.4, suggests that the straight 
line relationship in (2.1 1) is a reasonable assumption. 

of ya. 

Minutes = PO + P1 . Units + E ,  

2.5 PARAMETER ESTIMATION 

Based on the available data, we wish to estimate the parameters PO and PI.  This is 
equivalent to finding the straight line that gives the best f i r  (representation) of the 
points in the scatter plot of the response versus the predictor variable (see Figure 
2.4). We estimate the parameters using the popular least squares method, which 
gives the line that minimizes the sum of squares of the vertical distances3 from 
each point to the line. The vertical distances represent the errors in the response 
variable. These errors can be obtained by rewriting (2.10) as 

(2.12) Ez = yz - Po - p1xi, i = 1 , 2 , .  . . , n. 
The sum of squares of these distances can then be written as 

n n 

W O ,  P1) = c &4 = C(Yi - Po - P1xi)2. (2.13) 
i= 1 i= 1 

3An alternative to the vertical distance is the perpendicular (shortest) distance from each point to the 
line. The resultant line is called the orthogonal regression line. 
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The values of $0 and $1 that minimize S(/30, PI)  are given by 

(2.14) 

and 

po = g - ,813. (2.15) 

Note that we give the formula for $1 before the formula for $0 because ,& uses $1. 

The estimates ,& and $1 are called the least squares estimates of 00 and /31 because 
they are the solution to the least squares method, the intercept and the slope of the 
line that has the smallest possible sum of squares of the vertical distances from each 
point to the line. For this reason, the line is called the least squares regression line. 
The least squares regression line is given by 

Y = $0 + PIX.  (2.16) 

Note that a least squares line always exists because we can always find a line that 
gives the minimum sum of squares of the vertical distances. In fact, as we shall 
see later, in some cases a least squares line may not be unique. These cases are not 
common in practice. 

For each observation in our data we can compute 

jji=$o+$1xi, i = 1 , 2  ,..., n. (2.17) 

These are called the$tted values. Thus, the ith fitted value, jji, is the point on 
the least squares regression line (2.16) corresponding to xi. The vertical distance 
corresponding to the ith observation is 

e i = y i - y i ,  i = 1 , 2  ,..., n. (2.18) 

These vertical distances are called the ordinary4 least squares residuals. One 
properties of the residuals in (2.18) is that their sum is zero (see Exercise 2.5(a)). 
This means that the sum of the distances above the line is equal to the sum of the 
distances below the line. 

Using the Computer Repair data and the quantities in Table 2.6, we have 

- C(yi  - i j ) (x i  - Z) 1768 -- - 15.509, - - 
C(.i - Z)2 114 P1 = 

and 
$ - -  .. 0 - y - ,BIZ = 97.21 - 15.509 x 6 = 4.162. 

Then the equation of the least squares regression line is 

Minutes = 4.162 + 15.509 Units. (2.19) 

‘To be distinguished from other types of residuals to be presented later. 
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2 4 6 8 10 
Units 

Figure 2.5 Plot of Minutes versus Units with the fitted least squares regression line. 

This least squares line is shown together with the scatter plot of Minutes versus 
Units in Figure 2.5. The fitted values in (2.17) and the residuals in (2.18) are shown 
in Table 2.7. 

The coefficients in (2.19) can be interpreted in physical terms. The constant 
term represents the setup or startup time for each repair and is approximately 4 
minutes. The coefficient of Units represents the increase in the length of a service 
call for each additional component that has to be repaired. From the data given, 
we estimate that it takes about 16 minutes (15.509) for each additional component 
that has to be repaired. For example, the length of a service call in which four 
components had to be repaired is obtained by substituting Units = 4 in the equation 
of the regression line (2.19) and obtaining y = 4.162 + 15.509 x 4 = 66.20. Since 
Units = 4, corresponds to two observations in our data set (observations 4 and 5), 
the value 66.198 is the fitted value for both observations 4 and 5, as can be seen 
from Table 2.7. Note, however, that since observations 4 and 5 have different values 
for the response variable Minutes, they have different residuals. 

We should note here that by comparing (2.2), (2.7), and (2.14), an alternative 
formula for ,!?I can be expressed as 

(2.20) 

from which it can be seen that ,!?I, Cov(Y, X ) ,  and Cor(Y, X) have the same 
sign. This makes intuitive sense because positive (negative) slope means positive 
(negative) correlation. 

So far in our analysis we have made only one assumption, namely, that Y and 
X are linearly related. This assumption is referred to as the linearity assumption. 
This is merely an assumption or a hypothesis about the relationship between the 
response and predictor variables. An early step in the analysis should always be 
the validation of this assumption. We wish to determine if the data at hand support 
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i xi yi Ya ei 

1 1 23 19.67 3.33 

Table 2.7 
the Computer Repair Data 

The Fitted Values, yi, and the Ordinary Least Squares Residuals, ei, for 

i xi Yi $2 ei 

8 6 97 97.21 -0.21 
2 2 29 35.18 -6.18 
3 3 49 50.69 -1.69 
4 4 64 66.20 -2.20 
5 4 74 66.20 7.80 
6 5 87 81.71 5.29 
7 6 96 97.21 -1.21 

9 7 109 112.72 -3.72 
10 8 119 128.23 -9.23 
11 9 149 143.74 5.26 
12 9 145 143.74 1.26 

14 10 166 159.25 6.75 
13 10 154 159.25 -5.25 

the assumption that Y and X are linearly related. An informal way to check 
this assumption is to examine the scatter plot of the response versus the predictor 
variable, preferably drawn with the least squares line superimposed on the graph 
(see Figure 2.5). If we observe a nonlinear pattern, we will have to take corrective 
action. For example, we may re-express or transform the data before we continue 
the analysis. Data transformation is discussed in Chapter 6. 

If the scatter of points resemble a straight line, then we conclude that the linearity 
assumption is reasonable and continue with our analysis. The least squares estima- 
tors have several desirable properties when some additional assumptions hold. The 
required assumptions are stated in Chapter 4. The validity of these assumptions 
must be checked before meaningful conclusions can be reached from the analysis. 
Chapter 4 also presents methods for the validation of these assumptions. Using the 
properties of least squares estimators, one can develop statistical inference proce- 
dures (e.g., confidence interval estimation, tests of hypothesis, and goodness-of-fit 
tests). These are presented in Sections 2.6 to 2.9. 

2.6 TESTS OF HYPOTHESES 

As stated earlier, the usefulness of X as a predictor of Y can be measured informally 
by examining the correlation coefficient and the corresponding scatter plot of Y 
versus X .  A more formal way of measuring the usefulness of X as a predictor of Y 
is to conduct a test of hypothesis about the regression parameter PI. Note that the 
hypothesis PI = 0 means that there is no linear relationship between Y and X .  A 
test of this hypothesis requires the following assumption. For every fixed value of 
X ,  the E’S are assumed to be independent random quantities normally distributed 
with mean zero and a common variance 02. With these assumptions, the quantities, 
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bo and b1 are unbiased’ estimates of Po and PI, respectively. Their variances are 

Var(j3)) = a2 [A - + C(x2 22 - 2 ) 2  1 :  (2.21) 

and 

(2.22) 

Furthermore, the sampling distributions of the least squares estimates ,& and ,& 
are normal with means PO and P1 and variance as given in (2.21) and (2.22), 
respectively. 

The variances of j o  and b1 depend on the unknown parameter 02. So, we need 
to estimate a’ from the data. An unbiased estimate of 0’ is given by 

(2.23) 

where SSE is the sum of squares of the residuals (errors). The number n - 2 in 
the denominator of (2.23) is called the degrees of freedom (df). It is equal to the 
number of observations minus the number of estimated regression coefficients. 

Replacing g 2  in (2.21) and (2.22) by e2 in (2.23), we get unbiased estimates 
of the variances of bo and ,&. An estimate of the standard deviation is called the 
standard error (s.e.) of the estimate. Thus, the standard errors of ,& and ,& are 

2 2  

and 
u 

s.e.(Pl) = Jmz - ’ 

(2.24) 

(2.25) 

respectively, where 6 is the square root of e2 in (2.23). The standard errors of is 
a measure of how precisely the slope has been estimated. The smaller the standard 
error the more precise the estimator. 

With the sampling distributions of bo and PI,  we are now in position to perform 
statistical analysis concerning the usefulness of X as a predictor of Y .  Under the 
normality assumption, an appropriate test statistic for testing the null hypothesis 
Ho : p1 = 0 against the alternative H1 : # 0 is the t-test, 

(2.26) 

The statistic tl is distributed as a Student’s t with (n  - 2 )  degrees of freedom. The 
test is camed out by comparing this observed value with the appropriate critical 

‘An estimate 0 is said to be an unbiased estimate of a parameter 6’ if the expected value of 8 is equal 
to 8. 
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Figure 2.6 
for the t-test is the shaded areas under the curve. 

A graph of the probability density function of a t-distribution. The p-value 

value obtained from the t-table given in the Appendix to this book (see Table A.2), 
which is t(,-2,a/2), where (Y is a specified significance level. Note that we divide 
(Y by 2 because we have a two-sided alternative hypothesis. Accordingly, HO is to 
be rejected at the significance level cr if 

It1 I 2 + 2 , 4 2 )  > (2.27) 

where It11 denotes the absolute value of tl. A criterion equivalent to that in (2.27) 
is to compare the p-value for the t-test with (Y and reject HO if 

P(lt1l) 5 (2.28) 

where p (  It1 I), called the p-value, is the probability that a random variable having 
a Student t distribution with ( n  - 2) is greater than It11 (the absolute value of the 
observed value of the t-test). Figure 2.6 is a graph of the density function of a 
t-distribution. The p-value is the sum of the two shaded areas under the curve. 
The p-value is usually computed and supplied as part of the regression output by 
statistical packages. Note that the rejection of HO : p1 = 0 would mean that p1 is 
likely to be different from 0, and hence the predictor variable X is a statistically 
significant predictor of the response variable Y .  

To complete the picture of hypotheses testing regarding regression parameters, 
we give here tests for three other hypotheses that may arise in practice. 

Testing Ho: PI = Py 

The above t-test can be generalized to test the more general hypothesis HO : 
p1 = @, where p," is a constant chosen by the investigator, against the two-sided 
alternative H1 : p1 # 0:. The appropriate test statistic in this case is the t-test, 

(2.29) 

Note that when = 0, the t-test in (2.29) reduces to the t-test in (2.26). The 
statistic tl in (2.29) is also distributed as a Student's t with (n  - 2) degrees of 
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freedom. Thus, Ho : ,B1 = pf is rejected if (2.27) holds (or, equivalently, if (2.28) 
holds). 

For illustration, using the Computer Repair data, let us suppose that the manage- 
ment expected the increase in service time for each additional unit to be repaired to 
be 12 minutes. Do the data support this conjecture? The answer may be obtained 
by testing Ho : /31 = 12 against H1 : 01 # 12. The appropriate statistic is 

$1 - 12 tl = ~ 

4 1 )  0.505 
15.509 - 12 

= 6.948, - - 

with 12 degrees of freedom. The critical value for this test is t(n-2,a/2) - - 
t(12,0.025) = 2.18. Since tl = 6.948 > 2.18, the result is highly significant, 
leading to the rejection of the null hypothesis. The management’s estimate of the 
increase in time for each additional component to be repaired is not supported by 
the data. Their estimate is too low. 

The need for testing hypotheses regarding the regression parameter ,& may also 
arise in practice. More specifically, suppose we wish to test Ho : /30 = against 
the alternative H1 : 00 # f ig,  where is a constant chosen by the investigator. 
The appropriate test in this case is given by 

If we set 0; = 0, a special case of this test is obtained as 

(2.30) 

(2.31) 

which tests HO : Po = 0 against the alternative H I  : ,& # 0. 
The least squares estimates of the regression coefficients, their standard errors, 

the t-tests for testing that the corresponding coefficient is zero, and the p-values are 
usually given as part of the regression output by statistical packages. These values 
are usually displayed in a table such as the one in Table 2.8. This table is known 
as the coeficients table. To facilitate the connection between a value in the table 
and the formula used to obtain it, the equation number of the formula is given in 
parentheses. 

As an illustrative example, Table 2.9 shows a part of the regression output for 
the Computer Repair data in Table 2.5. Thus, for example, al = 15.509, the 
s.e.(al) = 0.505, and hence tl = 15.509/0.505 = 30.71. The critical value for 
this test using cy = 0.05, for example, is t(12,0.025) = 2.18. The tl = 30.71 is much 
larger than its critical value 2.18. Consequently, according to (2.27), Ho : = 0 is 
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Table 2.8 
Corresponding Formulas are Given in Parentheses 

A Standard Regression Output. The Equation Number of the 

~~ ~ ~~ 

Variable Coefficient (Formula) s.e. (Formula) t-test (Formula) p-value 

Constant bo (2.15) s.e.(/%) (2.24) to (2.31) PO 
X bi (2.14) s.e.(jl) (2.25) tl (2.26) Pl 

Table 2.9 Regression Output for the Computer Repair Data 

Variable Coefficient s.e. t-test p-value 

Constant 4.162 3.355 1.24 0.2385 
Units 15.509 0.505 30.71 < 0.0001 

rejected, which means that the predictor variable Units is a statistically significant 
predictor of the response variable Minutes. This conclusion can also be reached 
using (2.28) by observing that the p-value (p1 < 0.0001) is much less than cy = 0.05 
indicating very high significance. 

A Test Using Correlation Coefficient 

As mentioned above, a test of HO : = 0 against H1 : ,& # 0 can be thought 
of as a test for determining whether the response and the predictor variables are 
linearly related. We used the t-test in (2.26) to test this hypothesis. An alternative 
test, which involves the correlation coefficient between Y and X ,  can be developed. 
Suppose that the population correlation coefficient between Y and X is denoted 
by p. If p # 0, then Y and X are linearly related. An appropriate test for testing 
HO : p = 0 against H1 : p # 0 is given by 

(2.32) 

where Cor(Y, X )  is the sample correlation coefficient between Y and X ,  defined 
in (2.6), which is considered here to be an estimate of p. The t-test in (2.32) is 
distributed as a Student's t with (n - 2) degrees of freedom. Thus, Ho : p = 0 is 
rejected if (2.27) holds (or, equivalently, if (2.28) holds). Again if Ho : p = 0 is 
rejected, it means that there is a statistically significant linear relationship between 
Y and X .  

= 0. 
Consequently, the statistical tests for HO : p1 = 0 and HO : p = 0 should be 
identical. Although the statistics for testing these hypotheses given in (2.26) and 
(2.32) look different, it can be demonstrated that they are indeed algebraically 
equivalent. 

It is clear that if no linear relationship exists between Y and X ,  then 
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2.7 CONFIDENCE INTERVALS 

To construct confidence intervals for the regression parameters, we also need to 
assume that the E’S have a normal distribution, which will enable us to conclude 
that the sampling distributions of ,& and b1 are normal, as discussed in Section 2.6. 
Consequently, the (1 - a)  x 100% confidence interval for PO is given by 

a 0  f q n - 2 4 2 )  x s.e.(bo), (2.33) 

where t(n-2,cu/2) is the (1 - a/2) percentile of a t distribution with (n  - 2) degrees 
of freedom. Similarly, limits of the (1 - a )  x 100% confidence interval for ,& are 
given by 

A f q n - - 2 . 4 2 )  x s.e.(b1). (2.34) 

The confidence interval in (2.34) has the usual interpretation, namely, if we were 
to take repeated samples of the same size at the same values of X and construct for 
example 95% confidence intervals for the slope parameter for each sample, then 
95% of these intervals would be expected to contain the true value of the slope. 

From Table 2.9 we see that a 95% confidence interval for PI is 

15.509 f 2.18 x 0.505 = (14.408,16.610). (2.35) 

That is, the incremental time required for each broken unit is between 14 and 17 
minutes. The calculation of confidence interval for PO in this example is left as an 
exercise for the reader. 

Note that the confidence limits in (2.33) and (2.34) are constructed for each of 
the parameters PO and PI, separately. This does not mean that a simultaneous (joint) 
confidence region for the two parameters is rectangular. Actually, the simultaneous 
confidence region is elliptical. This region is given for the general case of multiple 
regression in the Appendix to Chapter 3 in (A.15), of which the simultaneous 
confidence region for ,f?o and 01 is a special case. 

2.8 PREDICTIONS 

The fitted regression equation can be used for prediction. We distinguish between 
two types of predictions: 

1.  The prediction of the value of the response variable Y which corresponds to 
any chosen value, ZO, of the predictor variable, or 

2. The estimation of the mean response PO, when X = 20. 

For the first case, the predicted value $0 is 

(2.36) 
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The standard error of this prediction is 

(2.37) 

Hence, the confidence limits for the predicted value with confidence coefficient 
(1 - a)  are given by 

Yo f t(n-2,ap) s.e.(Yoo>. (2.38) 

For the second case, the mean response po is estimated by 

bo = bo + 81x0. (2.39) 

The standard error of this estimate is 

(2.40) 

from which it follows that the confidence limits for po with confidence coefficient 
(1 - a)  are given by 

bo f t(n-2,ap) s.e.(bo). (2.41) 

Note that the point estimate of po is identical to the predicted response Go. This 
can be seen by comparing (2.36) with (2.39). The standard error of jio is, however, 
smaller than the standard error of yo and can be seen by comparing (2.37) with 
(2.40). Intuitively, this makes sense. There is greater uncertainty (variability) 
in predicting one observation (the next observation) than in estimating the mean 
response when X = 20. The averaging that is implied in the mean response reduces 
the variability and uncertainty associated with the estimate. 

To distinguish between the limits in (2.38) and (2.41), the limits in (2.38) are 
sometimes referred to as the prediction orforecast limits, whereas the limits given 
in (2.41) are called the conjidence limits. 

Suppose that we wish to predict the length of a service call in which four 
components had to be repaired. If 54 denotes the predicted value, then from (2.36) 
we get 

$4 = 4.162 + 15.509 x 4 = 66.20, 

with a standard error that is obtained from (2.37) as 

On the other hand, if the service department wishes to estimate the expected (mean) 
service time for a call that needed four components repaired, we would use (2.39) 
and (2.40), respectively. Denoting by p4, the expected service time for a call that 
needed four components to be repaired, we have: 

fi4 = 4.162 + 15.509 x 4 = 66.20, 
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with a standard error 

With these standard errors we can construct confidence intervals using (2.38) and 
(2.41), as appropriate. 

As can be seen from (2.37), the standard error of prediction increases the farther 
the value of the predictor variable is from the center of the actual observations. 
Care should be taken when predicting the value of Minutes corresponding to a 
value for Units that does not lie close to the observed data. There are two dangers 
in such predictions. First, there is substantial uncertainty due to the large standard 
error. More important, the linear relationship that has been estimated may not hold 
outside the range of observations. Therefore, care should be taken in employing 
fitted regression lines for prediction far outside the range of observations. In our 
example we would not use the fitted equation to predict the service time for a service 
call which requires that 25 components be replaced or repaired. This value lies too 
far outside the existing range of observations. 

2.9 MEASURING THE QUALITY OF FIT 

After fitting a linear model relating Y to X ,  we are interested not only in knowing 
whether a linear relationship exits, but also in measuring the quality of the fit of the 
model to the data. The quality of the fit can be assessed by one of the following 
highly related (hence, somewhat redundant) ways: 

1. When using the tests in (2.26) or (2.32), if HO is rejected, the magnitude of 
the values of the test (or the corresponding p-values) gives us information 
about the strength (not just the existence) of the linear relationship between 
Y and X .  Basically, the larger the t (in absolute value) or the smaller the 
corresponding p-value, the stronger the linear relationship between Y and X .  
These tests are objective but they require all the assumptions stated earlier, 
specially the assumption of normality of the E 'S .  

2. The strength of the linear relationship between Y and X can also be assessed 
directly from the examination of the scatter plot of Y versus X together with 
the corresponding value of the correlation coefficient Cor(Y, X )  in (2.6). 
The closer the set of points to a straight line (the closer Cor(Y, X )  to 1 or 
-l), the stronger the linear relationship between Y and X .  This approach is 
informal and subjective but it requires only the linearity assumption. 

3. Examine the scatter plot of Y versus Y .  The closer the set of points to a 
straight line, the stronger the linear relationship between Y and X .  One can 
measure the strength of the linear relationship in this graph by computing the 
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correlation coefficient between Y and Y ,  which is given by 

(2.42) C(Yi - id(5i - 5) Cor(Y, Y )  = Jc (Yi - $I2 c (52 - y)2 ’ 
where y is the mean of the response variable Y and y is the mean of the 
fitted values. In fact, the scatter plot of Y versus X and the scatter plot of 
Y versus Y are redundant because the patterns of points in the two graphs 
are identical. The two corresponding values of the correlation coefficient are 
related by the following equation: 

Cor(Y, Y )  = 1Cor(Y, X )  1. (2.43) 

Note that Cor(Y, Y )  cannot be negative (why?), but Cor(Y, X )  can be positive 
or negative (-1 6 Cor(Y, X )  5 1). Therefore, in simple linear regression, 
the scatter plot of Y versus Y is redundant. However, in multiple regression, 
the scatter plot of Y versus Y is not redundant. The graph is very useful 
because, as we shall see in Chapter 3, it is used to assess the strength of the 
relationship between Y and the set of predictor variables X I ,  X 2 , .  . . , X,. 

4. Although scatter plots of Y versus Y and Cor(Y, Y )  are redundant in simple 
linear regression, they give us an indication of the quality of the fit in both 
simple and multiple regression. Furthermore, in both simple and multiple 
regressions, Cor(Y, Y )  is related to another useful measure of the quality of 
fit of the linear model to the observed data. This measure is developed as 
follows. After we compute the least squares estimates of the parameters of a 
linear model, let us compute the following quantities: 

SSR = C(yi- 
SSE C(Y2 - Yd2, 

where SST stands for the total sum of squared deviations in Y from its mean 
3, SSR denotes the sum of squares due to regression, and SSE represents 
the sum of squared residuals (errors). The quantities (Gi - g), ($i - g), and 
(yi - @) are depicted in Figure 2.7 for a typical point (x2,yi). The line 
yi = PO + j l x i  is the fitted regression line based on all data points (not 
shown on the graph) and the horizontal line is drawn at Y = g. Note that 
for every point (xi, yi), there are two points, (52, &), which lies on the fitted 
line, and (xi, g )  which lies on the line Y = jj. 

A fundamental equality, in both simple and multiple regressions, is given by 

SST = SSR + SSE. (2.45) 

This equation arises from the description of an observation as 
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Figure 2.7 
line to data. 

A graphical illustration of various quantities computed after fitting a regression 

Yi = yz + ( ~ i  - k) 
Observed = Fit + Deviation from fit. 

Subtracting j j  from both sides, we obtain 

(Yz - ii) + (Yi - $2) 
- - Yz - Y 

Deviation from mean = Deviation due to fit + Residual. 

Accordingly, the total sum of squared deviations in Y can be decomposed 
into the sum of two quantities, the first, SSR, measures the quality of X as 
a predictor of Y, and the second, SSE, measures the error in this prediction. 
Therefore, the ratio R2 = SSR/SST can be interpreted as the proportion of 
the total variation in Y that is accounted for by the predictor variable X .  
Using (2.45), we can rewrite R2 as 

(2.46) 

Additionally, it can be shown that 

[Cor(Y, x)12 = [Cor(Y, Y)12 = R ~ .  (2.47) 

In simple linear regression, R2 is equal to the square of the correlation 
coefficient between the response variable Y and the predictor X or to the 
square of the correlation coefficient between the response variable Y and the 
fitted values Y .  The definition given in (2.46) provides us with an alternative 
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interpretation of the squared correlation coefficients. The goodness-of-jt 
index, R2, may be interpreted as the proportion of the total variability in the 
response variable Y that is accounted for by the predictor variable X .  Note 
that 0 5 R2 5 1 because SSE 5 SST. If R2 is near 1, then X accounts for a 
large part of the variation in Y. For this reason, R2 is known as the coeficient 
of determination because it gives us an idea of how the predictor variable X 
accounts for (determines) the response variable Y. The same interpretation 
of R2 will carry over to the case of multiple regression. 

Using the Computer Repair data, the fitted values, and the residuals in Table 
2.7, the reader can verify that Cor(Y, X )  = Cor(Y, Y )  = 0.994, from which 
it follows that R2 = (0.994)2 = .987. The same value of R2 can be 
computed using (2.46). Verify that SST = 27768.348 and SSE = 348.848. 
So that 

= 0.987. 
2 SSE 348.848 R =1- -=1-  

SST 27768.348 
The value R2 = 0.987 indicates that nearly 99% of the total variability in 
the response variable (Minutes) is accounted for by the predictor variable 
(Units). The high value of R2 indicates a strong linear relationship between 
servicing time and the number of units repaired during a service call. 

We reemphasize that the regression assumptions should be checked before draw- 
ing statistical conclusions from the analysis (e.g., conducting tests of hypothesis 
or constructing confidence or prediction intervals) because the validity of these 
statistical procedures hinges on the validity of the assumptions. Chapter 4 presents 
a collection of graphical displays that can be used for checking the validity of the 
assumptions. We have used these graphs for the computer repair data and found no 
evidence that the underlying assumptions of regression analysis are not in order. In 
summary, the 14 data points in the Computer Repair data have given us an infor- 
mative view of the repair time problem. Within the range of observed data, we are 
confident of the validity of our inferences and predictions. 

2.10 REGRESSION LINE THROUGH THE ORIGIN 

We have considered fitting the model 

Y = Po + p,x + E ,  (2.48) 

which is a regression line with an intercept. Sometimes, it may be necessary to fit 
the model 

Y = p,x + E ,  (2.49) 

a line passing through the origin. This model is also called the no-intercept model. 
The line may be forced to go through the origin because of subject matter theory 
or other physical and material considerations. For example, distance traveled as a 
function of time should have no constant. Thus, in this case, the regression model 



REGRESSION LINE THROUGH THE ORIGIN 43 

in (2.49) is appropriate. Many other practical applications can be found where 
model (2.49) is more appropriate than (2.48). We shall see some of these examples 
in Chapter 7. 

The least squares estimate of p1 in (2.49) is 

c yzxz 
a1 = 

The ith fitted value is 
yz = &ir i = 1 , 2 , .  . . , n, 

and the corresponding residual is 

e i = y i - y i ,  i = 1 , 2 ,  . . . ,  n. 

The standard error of the $1 is 

where 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

Note that the degrees of freedom for SSE is n - 1, not n - 2, as is the case for a 
model with an intercept. 

Note that the residuals in (2.52) do not necessarily add up to zero as is the case 
for a model with an intercept (see Exercise 2.1 l(c)). Also, the fundamental identity 
in (2.45) is no longer true in general. For this reason, some quality measures for 
models with an intercept such as R2 in (2.46), are no longer appropriate for models 
with no-intercept. The appropriate identity for the case of models with no intercept 
is obtained by replacing jj in (2.44) by zero. Hence, the fundamental identity 
becomes 

i=l  i=l i=l 

from which R2 is redefined as 

(2.55) 

(2.56) 

This is the appropriate form of R2 for models with no intercept. Note, however, 
that the interpretations for the two formulas of R2 are different. In the case of 
models with an intercept, R2 can be interpreted as the proportion of the variation in 
Y that is accounted for by the predictor variable X after adjusting Y by its mean. 
For models without an intercept, no adjustment of Y is made. For example, if we 
fit (2.49) but use the formula for R2 in (2.46), it is possible for R2 to be negative in 
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some cases (see Exercise 2.1 l(d)). Therefore, the correct formula and the correct 
interpretation should be used. 

The formula for the t-test in (2.29) for testing HO : p1 = ,@ against the two- 
sided alternative H1 : P1 # ,@, continues to hold but with the new definitions of 

and s.e.(bl) in (2.50) and (2.53), respectively. 
As we mentioned earlier, models with no intercept should be used whenever 

they are consistent with the subject matter (domain) theory or other physical and 
material considerations. In some applications, however, one may not be certain as 
to which model should be used. In these cases, the choice between the models given 
in (2.48) and (2.49) has to be made with care. First, the goodness of fit should be 
judged by comparing the residual mean squares (6’) produced by the two models 
because it measures the closeness of the observed and predicted values for the two 
models. Second, one can fit model (2.48) to the data and use the t-test in (2.31) 
to test the significance of the intercept. If the test is significant, then use (2.48), 
otherwise use (2.49). 

An excellent exposition of regression models through the origin is provided by 
Eisenhauer (2003) who also alerts the users of regression models through the origin 
to be careful when fitting these models using computer software programs because 
some of them give incorrect and confusing results for the case of regression models 
through the origin. 

2.1 1 TRIVIAL REGRESSION MODELS 

In this section we give two examples of trivial regression models, that is, regression 
equations that have no regression coefficients. The first example arises when we 
wish to test for the mean p of a single variable Y based on a random sample of 
n observations y1, y2, . . ., yn. Here we have HO : p = 0 against HI : p # 0. 
Assuming that Y is normally distributed with mean p and variance 02, the well- 
known one-sample t-test 

j j -0  - Y t = - - -  
s.e.(jj) s y / f i  ’ (2.57) 

can be used to test Ho, where sy is sample standard deviation of Y. Alternatively, 
the above hypotheses can be formulated as 

(2.58) 

where Po = po. Thus, Model 1 indicates that p = 0 and Model 2 indicates that 
p # 0. The least squares estimate of PO in Model 2 is 3, the ith fitted value is 
yi = jj, and the ith residual is ei = yi - g. It follows then that an estimate of u2 is 

Ho(Model 1) : Y = E against Hl(Mode2 2) : Y = PO + E ,  

(2.59) 

which is the sample variance of Y .  The standard error of $0 is then 6 1 6  = 
sy/f i ,  which is the familiar standard error of the sample mean jj. The t-test for 
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testing Model 1 against Model 2 is 

(2.60) 

which is the same as the one-sample t-test in (2.57). 
The second example occurs in connection with the paired two-sample t-test. For 

example, to test whether a given diet is effective in weight reduction, a random 
sample of n people is chosen and each person in the sample follows the diet for a 
specified period of time. Each person’s weight is measured at the beginning of the 
diet and at the end of the period. Let Y1 and Yz denote the weight at the beginning 
and at the end of diet period, respectively. Let Y = Y1 - YZ be the difference 
between the two weights. Then Y is a random variable with mean p and variance 
02. Consequently, testing whether or not the diet is effective is the same as testing 
Ho : p = 0 against H1 : p > 0. With the definition of Y and assuming that Y is 
normally distributed, the well-known paired two-sample t-test is the same as the 
test in (2.57). This situation can be modeled as in (2.58) and the test in (2.60) can 
be used to test whether the diet is effective in weight reduction. 

The above two examples show that the one-sample and the paired two-sample 
tests can be obtained as special cases using regression analysis. 

2.12 BIBLIOGRAPHIC NOTES 

The standard theory of regression analysis is developed in a number of good text 
books, some of which have been written to serve specific disciplines. Each provides 
a complete treatment of the standard results. The books by Snedecor and Cochran 
(1980), Fox (1984), and Kmenta (1986) develop the results using simple algebra 
and summation notation. The development in Searle (1971), Rao (1973), Seber 
(1977), Myers (1990), Sen and Srivastava (1 990), Green (1993), Graybill and Iyer 
(1994), and Draper and Smith (1 998) lean more heavily on matrix algebra. 

EXERCISES 

2.1 Using the data in Table 2.6: 
Compute Var(Y) and V a r ( X ) .  

Prove or verify that C (yi - jj) = 0. 

Prove or verify that any standardized variable has a mean of 0 and a 
standard deviation of 1. 
Prove or verify that the three formulas for Cor(Y, X )  in (2.3,  (2.6), and 
(2.7) are identical. 
Prove or verify that the three formulas for ,& in (2.14) and (2.20) are 
identical. 

n 

i= 1 




